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Abstract: A novel approach and program are developed for deterioration and predictive modeling of concrete bridge decks based on non-
destructive evaluation (NDE) data. Through an iterative process—combined with data processing, bridge deck segmentation, regression
analysis, data integration, and deterioration and predictive modeling—the developed program aids estimates of the remaining service life
of bridge decks. Data collected on an actual bridge deck during a period of five and half years are used to illustrate the operation and
performance of the developed program. Based on evaluation of condition maps, condition indices, and deterioration curves developed
for a range of input parameters, the proposed method quantifies progression of deterioration in bridge deck. By reviewing the predictive
models, combined with segmentation of the bridge deck area, a more realistic and practical estimation of the deck’s remaining service life can
be made. It is anticipated that the proposed method will provide objective and comprehensive evaluation and prediction of bridge deck
condition based on data from multiple NDE technologies. DOI: 10.1061/(ASCE)IS.1943-555X.0000483. © 2019 American Society of
Civil Engineers.
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Introduction

According to a recent report (ASCE 2017), nearly 40% of bridges
in the United States are 50 years old or older and over 9% are struc-
turally deficient. Moreover, a great number of the nation’s bridges
are rapidly approaching the end of their design life. As a conse-
quence, the cost of the backlog of bridge rehabilitation projects
is estimated at $123 billion (ASCE 2017). Bridge decks are
reported to be deteriorating much earlier than other bridge compo-
nents (Nowak and Szerszen 2003) due to their direct exposure to
traffic and environmental loads. Thus, they are by far the largest
expenditure in bridge maintenance and repair (Gucunski et al.
2012). For these reasons, it is very important to accurately and ob-
jectively assess the condition of bridge decks, and to identify the
main causes of deterioration using accurate, rapid, and nondestruc-
tive technologies. Periodically collected multiple nondestructive
evaluation (NDE) technology data sets present opportunities for
prediction of remaining service life which will further provide
significant assistance in optimizing bridge maintenance, rehabilita-
tion, and repair strategies.

The dominant practice of bridge deck inspection by US transpor-
tation agencies is a visual one accompanied by simple nondestructive

procedures such as chain dragging and hammer sounding. Based
on such inspections, agencies report National Bridge Inventory
(NBI) deck condition ratings defined by FHWA (2004, 2012)
and AASHTO (2015). NBI ratings are nationally adopted as bridge
condition evaluation and repair guidelines. Generally qualitative
and subjective visual inspection data make it challenging to develop
models that objectively describe hidden deterioration processes in
most cases.

Due to the importance of prediction, significant efforts have
been made to develop deterioration models that permit remaining
deck service life to be predicted using various methodologies
(Melhem and Cheng 2003; Oh et al. 2006; Williamson et al. 2007;
Lee 2011; Ghodoosipoor 2013; Zatar 2014; Azari et al. 2016;
Saberi et al. 2016; Jeong et al. 2017). Ghodoosipoor (2013) pro-
posed deterioration models for bridge decks through a system
reliability analysis based on visual inspection data. Several studies
have been conducted to predict remaining service life of bridge
decks based on reinforcement corrosion. Melhem and Cheng
(2003) suggested prediction of remaining service life through
k-nearest neighbor learning and inductive learning techniques
based on reinforcement corrosion data. Williamson et al. (2007)
developed and validated a chloride corrosion model using Monte
Carlo resampling of data collected from ten bridge decks in
Virginia. Zatar (2014) proposed modeling the remaining service
life and service life extension provided by various repair and
protection methods based on half-cell potential measurements on
highway bridges in West Virginia. Oh et al. (2006) developed a
realistic evaluation system for estimating the service life of concrete
bridge decks based on deterioration models derived from traffic
loads and environmental effects. Lee (2011) presented a time-
dependent reliability approach to estimate the remaining service
life of a rehabilitated bridge deck considering a number of factors:
structure supporting the deck, geometry, material properties,
moisture, creep, fatigue, thermal effects, corrosion, and failure
modes.
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Although many researchers have proposed deterioration models
for bridge decks and ways to estimate remaining service life, most
studies have been performed within a relatively short time period or
based on a single inspection method, or they have heavily relied on
simulations and calculated data.

This paper presents a program for estimating the remaining ser-
vice life of a concrete bridge deck based on analysis of data from
multiple NDE technologies collected periodically over a period of
five and half years. It provides (1) a brief description of NDE sur-
veys of the concrete deck of a bridge in Virginia conducted between
2009 and 2015 (Gucunski et al. 2015; Azari et al. 2016; Gucunski
et al. 2017b); (2) a description of the key features and interfaces of
the developed NDE data-processing and data analysis program;
(3) a discussion of the quantification of condition deterioration pro-
gression and bridge deck deterioration and of predictive models
based on different mathematical curve models; and (4) an example
of estimation of remaining bridge deck service life based on the
developed models. The models derived from the developed pro-
gram will be continuously improved and calibrated as data on other
bridges become available.

Background

Description of the Surveyed Bridge

The nondestructive survey was performed on the bridge carrying
southbound US Route 15 over Interstate 66 (I-66) in Haymarket,
Virginia (Fig. 1). Selected information about the bridge, taken from
the NBI, is provided in Table 1. The surveyed bridge deck is a two-
lane and shoulder, two-span-bridge approximately 84 m long and
13 m wide. It was built in 1979 with a bare, cast-in-place, 22-cm-
thick reinforced concrete deck. According to the latest inspection in
2015, average daily traffic on the bridge was 15,577 vehicles. The
bridge deck received a consistent NBI rating of 6 (satisfactory con-
dition) for 25 consecutive years (1991–2015). It has been surveyed
four times by the Rutgers NDE team as a part of the FHWA’s Long-
Term Bridge Performance (LTBP) Program in September 2009,
August 2011, October 2014, and May 2015. Temperature and rel-
ative humidity data on the surveying days obtained from the nearest
weather station are listed in Table 2 with precipitation histories.

NDE Technologies

Five NDE technologies were deployed simultaneously, as shown in
Fig. 2, to detect and characterize three main deterioration types in

Fig. 1. (Color) Satellite view of the surveyed bridge, James Madison
HWY over I-66, southbound—most recent photo (October 2013).
(Imagery © 2019 Google.)

Table 1. National Bridge Inventory data for the surveyed bridge

Datum Description

Name James Madison HWY over I-66
Structure number 000000000014178
Total length 42.1 m
Deck width edge to edge 12.8 m
Year built 1979
Number of main spans 2
Main span material Steel continuous
Main spans design Stringer/multibeam or girder
Deck type Concrete cast in place
Wearing surface Monolithic concrete
Average daily traffic
(latest survey in February 2015)

15,577

Table 2. Temperature, relative humidity, and precipitation history during
the survey

Survey date
Temperature

(°C)

Relative
humidity

(%)
Precipitation

history

September 18, 2009 (Friday) 19.4 83 24 mm on August
22; dried for
27 days

September 19, 2009 (Saturday) 18.9 52
September 20, 2009 (Sunday) 20.0 49
August 2, 2011 (Tuesday) 29.4 43 9 mm on July 25;

dried for 8 daysAugust 3, 2011 (Wednesday) 25.6 71
August 4, 2011 (Thursday) 26.1 69
October 6, 2014 (Monday) 13.9 55 15 mm on

September 25;
dried for 11 days

October 7, 2014 (Tuesday) 16.7 72
October 8, 2014 (Wednesday) 19.4 65
May 26, 2015 (Tuesday) 25.0 60 7 mm on May 21;

dried for 5 daysMay 27, 2015 (Wednesday) 25.6 69
May 28, 2015 (Thursday) 26.7 65

Note: Temperature and relative humidity = average of data measured at
nearest weather station during typical survey schedule, 10 a.m.–2 p.m.

Fig. 2. (Color) Nondestructive evaluation data collection on the deck
of the studied bridge.
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concrete bridge decks: (1) assessment of the corrosive environ-
ment and related anticipated corrosion rate via electrical resis-
tivity (ER) as well as assessment of the probability of active
reinforcement corrosion via half-cell potential (HCP); (2) assess-
ment of delamination via impact echo (IE); and (3) assessment of
concrete quality degradation via ground penetrating radar (GPR)
and the ultrasonic surface wave (USW) method. Detailed descrip-
tions of the physical principles of operation and application of
each of the five NDE technologies can be found in Gucunski et al.
(2012, 2017b). It is significant that variation in environmental
conditions, such as pore solution composition, degree of polari-
zation, temperature, and saturation, influence the NDE results,
especially those from ER and HCP. Because of practical issues,
however, controlling environmental parameters during the survey
of an actual bridge deck was not viable. Except when using GPR,
the bridge deck was surveyed on a grid measuring 60 × 60 cm,
with the first longitudinal line of the grid offset 30 cm from the
parapet. GPR scanning was in the longitudinal direction of the
bridge with 60-cm spacing between the survey lines. The origin
of the coordinate system was on the northwestern corner of the
deck as depicted in Fig. 1, with the x-axis parallel to and the
y-axis perpendicular to the direction of traffic. NDE survey
results are summarized and presented here as two-dimensional
(2D) color-coded condition maps; summary conditions are ex-
pressed in terms of condition indices (CIs) (Kim et al. 2015,
2016a, b, 2017).

Fig. 4. (Color) Flowchart of the developed deterioration modeling
program with processing steps.

Fig. 3. (Color) Graphical user interface of the developed deterioration-modeling program.
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Data-Processing and Data Analysis Program

A novel automated NDE data-processing and data analysis pro-
gram, developed using MATLAB, was designed to (1) create

condition maps and compute CIs, (2) develop deterioration models,
(3) predict conditions, and, ultimately, and (4) estimate the remain-
ing service life of a bridge deck. The program’s graphical user inter-
face (GUI) and a flowchart representing the fundamental algorithm

Fig. 5. (Color) Deterioration models based on four NDE technologies: (a) single-segment based on condition indices; (b) single-segment based on
serious condition percentages; (c) north span and (d) south span of 1 × 2 segmentation (longitudinal discretization); and (e) western side and (f) eastern
side of 2 × 1 segmentation (transverse discretization).
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are shown in Figs. 3 and 4, respectively. The main flow of the pro-
gram can be divided into five processing steps: (1) NDE data input,
(2) deck segmentation and data regression, (3) data integration and
prediction, (4) data output, and (5) decision making. Initially, the
program imports separate text-based input files containing each of
the five NDE data types: ER, HCP, IE, GPR, and USW, along with
general bridge information. Data boundaries and weighting factors
for each NDE technology are input to create condition maps and to
quantify the summarized bridge deck conditions as CIs. As a de-
fault, the CI for each NDE method is calculated on a scale of 0
(worst) to 100 (best) through a weighted deck area approach using
the following equations:

CIER ¼ AVery Low × 100þ AModerate × 50þ AHigh × 0

ATotal
ð1Þ

CIHCP ¼ A90% Sound × 100þ ATransition × 50þ A90%Corrosion × 0

ATotal

ð2Þ

CIIE ¼ AGood × 100þ AFair × 50þ APoor × 50þ ASerious × 0

ATotal

ð3Þ

CIGPR ¼ AG × 100þ AF × 70þ AP × 40þ AS × 0

ATotal
ð4Þ

where AVery Low, AModerate, and AHigh = deck areas with ER ¼<40,
40–70, and >70 kΩ · cm, respectively (Langford and Broomfield
1987; Dyer 2014); A90%Sound, ATransition, and A90%Corrosion = areas
with HCP ¼>200, −350 to −200, and < − 350 mV, respectively
(ASTM 2015); AGood, AFair, APoor, and ASerious = areas in good, fair,
poor, and serious condition, respectively (Gucunski et al. 2017b;
Kim et al. 2017; Gucunski et al. 2017a); AG, AF, AP, and AS =
areas with GPR signal attenuation (normalized dB) = > − 15,
−15 to −17, −17 to −20, and < − 20, respectively (Azari et al.
2016); and ATotal = total surveyed area.

The weights in Eqs. (1)–(4) are the suggested values resulting
from discussions in the FHWA LTBP regarding the presentation of
summary condition data. However, it was recognized in those dis-
cussions that bridge owners would assign different weights based
on their experience of deterioration processes and decision making.
For concrete quality based on USW data, on the other hand, CI
calculation similar to that in Eqs. (1)–(4) was not applicable due
to the inherited variation in concrete modulus of elasticity at the
time of construction (Gucunski et al. 2017b; Kim et al. 2017;
Gucunski et al. 2017a). Furthermore, compared with other NDE
data, less pronounced changes were observed in concrete modulus
of elasticity as the deck deteriorated. For these reasons, USW data
are not included in subsequent discussions here.

Once input data sets and parameters are loaded into the program,
the bridge deck area is discretized into segments for further evalu-
ation. An example of segmentation is shown in Fig. 3, which shows
the bridge deck discretized into 648 1.3 × 1.2-m (4.2 × 4.0-ft) seg-
ments (9 × 72). Segment size was determined to have at least four
data points per segment for each NDE technology, considering the
grid size used during the survey. The segmented deck area is plotted
and the segment numbers listed in a listbox from which the user can
select a segment of interest and review the corresponding deterio-
ration curves. Deterioration modeling combined with segmentation
can assist in prioritizing deck areas for intervention. For example,
relatively rapid deterioration of a lane (transverse discretization)

or severe damage to a span (longitudinal discretization) can be
identified intuitively by reviewing condition maps and indices with
appropriate segmentation.

Once segmentation is completed, deterioration models for
each segment are computed through various multiple regression
analyses. The results are stored in a database for later reloading.
The duration of analysis depends on the size of the input data
set, the number of segments, and computer performance. However,
analysis of a typical highway bridge takes up to several minutes
on a desktop computer with a Core i5-6400 processor, integrated
graphics, and 16-GB memory.

Once analysis results are obtained and saved, deterioration
curves for each segment, derived from varying curve models and
data types, can be selected and visually reviewed. Based on the
selected deterioration models and data types, deterioration curve
data for each segment are integrated to reconstruct condition maps
and compute CIs (Fig. 3) to predict bridge deck condition at an
arbitrarily selected point in time. Detailed descriptions of the
deterioration analysis, integration of discretized data, and condition
prediction are provided in subsequent sections.

Deterioration Modeling

Several deterministic models of deterioration curves were studied.
These included linear (linear, bilinear, and trilinear), nonlinear (pol-
ynomial), and sigmoidal (S or reversed-S) regressions (Draper and
Smith 1998; Seber and Wild 2003). The sigmoidal curves were
almost horizontal (zero slopes) at both ends, representing the
deterioration progression of typical bridge decks more realistically
than the polynomial curves. In fact, the former were observed to fit
the data with higher coefficients of determination (R2) than the
latter. Therefore, although the developed program is equipped with
a function for both sigmoidal and polynomial deterioration analy-
ses, polynomial regression is not included in subsequent discus-
sions here.

Table 3. Coefficient values for deterioration models in Fig. 5

Model
NDE
data

Coefficient

a b c d

Condition index
(1 × 1)

IE 100.01 4.39 2,012.08 0.10
ER 100.03 4.59 2,009.18 0.10
GPR 100.09 4.54 2,007.89 0.09
HCP 100.21 4.43 2,006.70 0.08

Serious condition
percentage (1 × 1)

IE 0.03 95.81 2,015.41 0.12
ER 0.01 95.15 2,012.05 0.14
GPR 0.01 95.68 2,013.91 0.11
HCP −0.03 95.88 2,011.86 0.10

Condition index
(1 × 2, north)

IE 100.01 4.39 2,012.17 0.11
ER 100.03 4.65 2,009.37 0.10
GPR 100.13 4.31 2,008.38 0.09
HCP 100.20 4.36 2,007.20 0.08

Condition index
(1 × 2, south)

IE 100.01 4.39 2,011.98 0.10
ER 100.05 4.53 2,008.94 0.10
GPR 98.90 5.59 2,010.97 9.85
HCP 100.22 4.51 2,006.15 0.08

Condition index
(2 × 1, west)

IE 100.00 4.91 2,011.12 0.14
ER 100.01 4.86 2,008.25 0.12
GPR 100.05 4.59 2,008.79 0.10
HCP 100.19 4.74 2,004.96 0.09

Condition index
(2 × 1, east)

IE 100.01 3.56 2,013.33 0.09
ER 100.02 4.45 2,010.37 0.10
GPR 100.13 4.57 2,006.83 0.09
HCP 100.15 4.25 2,008.29 0.08
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The results of sigmoidal regression analyses based on four
NDE technologies (IE, ER, GPR, and HCP) without segmentation
(single-segment) are plotted in Fig. 5(a). The program searches and
reads NDE data in the selected segment for deterioration modeling;
in this case, the entire NDE data set was used to build the models
because no segmentation was applied. The marks and solid lines in
the plots represent actual NDE data surveyed in 2009–2015
and best-fit curves, respectively. A four-parameter logistic model
was used for the sigmoidal regression according to the following
equation (Seber and Wild 2003):

CI ¼ aþ b − a

1þ 10ðc−tÞd
ð5Þ

where a and b = lower and upper asymptotes, respectively; c =
inflection point in time; d = slope of the sigmoidal curve at its
midpoint; and t = time.

Polynomial regression was achieved using least squares to fit
quadratic polynomials to the actual data set. Fig. 5(a) is based

on the CIs calculated by Eqs. (1)–(4) with an assumed CI of
100 at the time of bridge construction in 1979. Fig. 5(b), on the
other hand, is based on the serious condition percentage—that
is, the percentages of deck area in serious (worst) condition for each
NDE method (areas of AHigh for ER, A90%Corrosion for HCP, ASerious
for IE, and AS for GPR divided by ATotal). Therefore, the curves
based on the CIs begin with 100 in 1979 whereas the initial values
of the curves based on the serious condition percentage are 0. This
reflects a common practice of assessing the percentage of deterio-
rated bridge deck area, such as delamination detected by chain drag
and corrosion detected by half-cell potential. The model coeffi-
cients a, b, c, and d for the CI [Fig. 5(a)] and the serious condition
percentage [Fig. 5(b)] are provided in Table 3.

Deterioration models for segmented bridge deck areas are
shown in Figs. 5(c–f), and their model coefficient values are
provided in Table 3. Figs. 5(c and d) are the first and second seg-
ments of the 1 × 2 segmentation (longitudinal discretization), re-
spectively representing the north and south spans of the bridge
deck. Figs. 5(e and f) are the first and second segments of the

Fig. 6. (Color) Deterioration models of the 2 × 2 segmented and 3 × 4 segmented bridge deck areas based on data from four NDE technologies:
(a) ER, 4 segments; (b) ER, 12 segments; (c) HCP, 4 segments; (d) HCP, 12 segments; (e) IE, 4 segments; (f) IE, 12 segments; (g) GPR, 4 segments;
and (h) GPR, 12 segments.

© ASCE 04019010-6 J. Infrastruct. Syst.
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2 × 1 segmentation (transverse discretization), representing the
split between the shoulder and the right and left lanes. The most
rapid decrease in the segmental CIs are found in the 2008–2012
period, in which the inflection points of the sigmoidal deterioration
curves are located. Slightly higher deterioration rates are observed
for the south span [Fig. 5(b)] and the shoulder [Fig. 5(c)] compared
with the other segments. This can be identified in the corrosion
resistivity (ER) map for 2014, shown in Fig. 3, in which hot
colors represent areas with anticipated high or very high corrosion
rates and cool colors represent areas with anticipated low or very
low corrosion rates. More severe deterioration in the bottom half
of the map, presumably from the accumulation of soil, deicing
chemicals, and debris in the shoulder area, could have considerably
accelerated bridge deck deterioration—that is, chloride-induced
corrosion—as a whole. As can be seen, an appropriate segmentation
of NDE data in bridge deck condition assessment delivers useful
information for more economical and effective maintenance and
rehabilitation planning. For this bridge deck, for example, the south
span and shoulder would have priority in maintenance and/or repair.

In all plots in Fig. 5, the highest deterioration rate is observed in
the HCP and ER curves; the lowest is observed in the IE curves.
This explains the general assumption of concrete deterioration
stages: (1) development of a corrosive environment by chloride and
moisture penetration (ER and GPR), (2) rebar corrosion (HCP and
ER), (3) concrete degradation (GPR), and (4) corrosion-induced
delamination (IE). It also agrees with Pailes and Gucunski’s (2015)
study on evaluation of concrete bridge decks based on multimodal
NDE data.

Deterioration curves for different numbers of segments for the
four NDE methods are compared in Fig. 6, and their model coef-
ficients a, b, c, and d are provided in Table 4. Figs. 6(a, c, e, and g)
are curves for four segments (2 × 2), and Figs. 6(b, d, f, and h) are
curves for 12 segments (3 × 4). SDs of the deterioration curves
shown in Fig. 6 are listed in Table 5.

As expected, SD values increased when the number of segments
increased from 4 to 12, with the greatest increase for GPR (2.4–
6.0); they remained almost constant for IE. Deterioration models
for segmented decks showing low SD values had a narrow range
of segmental CIs. In contrast, segmental CIs for deterioration mod-
els with high SD values ranged widely. Another interesting finding
is the close similarity between the ER and HCP deterioration curves
for the deck with 4 segments. However, when the number of
segments increased to 12, these curves became quite distinct, lead-
ing to the conclusion that deterioration curves are unique to each
segmented deck area. Thus, as much as the application of multiple
NDE methods is important for comprehensive bridge deck evalu-
ation, a proper segmentation of NDE data is essential for effective
and objective deterioration modeling.

Condition Prediction

Based on the selected models, deterioration curve data for each seg-
ment are integrated to reconstruct condition maps. Corresponding
CIs are calculated to predict bridge deck condition with age as well
as to estimate CI values from a time when surveys were not con-
ducted. The program creates condition maps based on eight deterio-
ration models, as shown in Fig. 3: two (CI and serious condition
percentage) each for ER, HCP, IE, and GPR. MATLAB’s filled 2D
contour function is based on the reconstructed matrix of the
integrated data in x, y, and z format, where x and y are the
x- and y-coordinates, respectively, and z is the CI. Initially, isolines
are computed and displayed based on the matrix. Then the areas
between them are filled with corresponding colors with respect
to the x-y plane.

Fig. 7 compares condition maps based on actual NDE data
collected in 2014 [Fig. 7(a)] and reconstructed condition maps
with 648 segments (9 × 72) based on the deterioration models
[Fig. 7(b)] to evaluate map reconstruction for each NDE technol-
ogy. Note that neither display of reconstructed condition maps to
scale nor coverage of skewed areas is as yet supported in the current
version of the developed program. Both condition maps are color-
coded, 2D, and contoured. The reconstructed maps are plotted via
MATLAB’s contour function with a 10-level color scale; the actual
condition maps are created using commercial surface-mapping
software, Surfer by Golden Software, with broader color scales.
Although the overall color legends are distinct for the reconstructed
and actual maps, nearly identical color (deterioration) patterns can

Table 4. Coefficient values for deterioration models in Fig. 6

Model

ER HCP IE GPR

a b c d a b c d a b c d a b c d

2 × 2 100.0 4.89 2009 0.12 100.1 4.77 2006 0.10 100.0 4.91 2011 0.14 100.1 4.28 2010 0.09
100.0 4.80 2007 0.11 100.3 4.73 2004 0.08 100.0 4.91 2011 0.14 100.0 4.81 2008 0.11
100.0 4.47 2010 0.10 100.2 4.00 2008 0.08 100.0 3.56 2013 0.09 100.2 4.40 2007 0.08
100.0 4.43 2011 0.10 100.1 4.49 2008 0.09 100.0 3.57 2013 0.09 100.1 4.72 2007 0.10

3 × 4 100.0 5.06 2009 0.26 99.0 5.81 2011 11.46 100.0 4.96 2011 0.16 100.0 4.98 2008 0.14
100.0 4.94 2009 0.14 100.0 4.86 2007 0.11 100.0 4.91 2012 0.15 100.1 4.59 2007 0.09
99.0 5.87 2011 0.21 100.3 4.96 2001 0.10 100.0 4.94 2010 0.15 99.0 5.90 2011 9.28

100.0 4.86 2009 0.13 100.0 4.99 2007 0.14 100.0 4.89 2011 0.14 100.0 4.94 2007 0.12
100.0 4.66 2009 0.10 100.1 4.45 2009 0.09 100.0 4.08 2013 0.10 100.0 4.64 2012 0.11
100.0 3.98 2011 0.09 100.2 2.26 2012 0.07 100.0 4.15 2012 0.10 100.0 4.31 2012 0.10
100.1 4.72 2008 0.10 101.1 3.67 2005 0.06 100.0 4.54 2012 0.11 100.0 4.94 2010 0.14
100.1 3.81 2011 0.09 100.1 4.01 2010 0.08 100.0 3.78 2013 0.09 100.0 4.86 2012 0.14
100.0 4.76 2008 0.11 99.0 5.85 2011 1.12 100.0 4.04 2012 0.09 100.3 4.73 2004 0.08
100.0 4.11 2012 0.10 100.2 3.55 2010 0.08 100.0 3.32 2014 0.09 100.4 3.81 2007 0.07
100.0 4.60 2011 0.11 100.3 4.45 2005 0.08 100.0 3.11 2013 0.08 100.4 4.49 2005 0.08
100.1 3.61 2011 0.08 100.0 4.96 2009 0.13 100.0 4.18 2013 0.11 100.4 4.35 2005 0.08

Table 5. Standard deviation of deterioration models of 4- and 12-segment
deck areas for ER, HCP, IE, and GPR

Segmentation

Standard deviation

ER HCP IE GPR

4 segments (2 × 2) 2.5 3.6 2.5 2.4
12 segments (3 × 4) 3.1 4.7 2.5 6.0

© ASCE 04019010-7 J. Infrastruct. Syst.
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Fig. 7. (Color) Comparisons of ER, HCP, IE, and GPR actual and reconstructed condition maps for 2014: (a) condition maps based on actual NDE
data; and (b) reconstructed condition maps based on deterioration models (not to scale). Axes are in feet.
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Fig. 8. (Color) Reconstructed two-year CI maps (2008–2020) showing deterioration progression: (a) ER; (b) HCP; (c) IE; and (d) GPR.
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be identified for the NDE technologies except IE. The reason is
that map reconstruction through segmentation, regression, deterio-
ration modeling, integration, and contour mapping may not provide
high resemblance when deteriorated areas are dispersed and small.
This is the nature of segmentation with regression analysis. As the
dispersed areas of deterioration combine to form larger areas,
more accurate condition prediction becomes possible through map
reconstruction. Note that the reconstructed IE map more closely
resembles the actual map with more segments. However, excessive
segmentation without considering the grid size used during the
survey may result in segments without data.

Reconstructed condition maps with 648 segments for each NDE
technology, in two-year increments from 2008 to 2020, are shown
in Fig. 8. The program supports real-time display and update of
maps for a selected deterioration model and year. Thus, the user
can review condition maps and indices estimating possible bridge
deck conditions in a near future, and check the deterioration models
for a specific segment to further analyze deterioration in the areas of
interest.

Deterioration progression can be clearly followed in all condi-
tion maps presented in Fig. 8, as reflected in an increase in deterio-
rated area size and deterioration severity with time. The dominant
color thus changes with age from blue to red. In addition, the maps
identify very similar deterioration patterns for different NDE tech-
nologies. It is expected that nearly the entire bridge deck will have
seriously deteriorated by the year 2020, except for delamination,
and that expected CIs in 2020 will be between 10.5 and 12.0.
The delamination CI is estimated to be 15.7 in 2020—31%–
50% higher than estimated CIs for the other NDE methods. Still,
comparable ranges of CIs point to corrosion as the primary cause of
delamination.

Estimated CIs are plotted in Fig. 9. The combined index is an
average of CIs for ER, HCP, IE, and GPR, based on which overall
bridge deck condition can be simply quantified. Observed for all
NDE methods is a gradual decrease in CIs with time since the
deterioration is approaching its final stage. According to the pre-
dictive model, in the 12 years from 2008 to 2020, the combined
CI will have decreased significantly, from 70 to 12.

To evaluate correlations among NDE data for the four technol-
ogies, reconstructed condition maps for 2016 for ER, HCP, IE,

Fig. 9. (Color) Estimated condition indices based on deteriora-
tion models for each NDE type and average (combined) indices
(2008–2020).

Fig. 10. (Color) Comparison of 2016 reconstructed condition maps: ER, HCP, IE, and GPR. Axes are in feet.
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and GPR are compared in Fig. 10. Overall, very similar deteriora-
tion patterns are observed, with correlations among ER, HCP,
and GRP especially strong because these technologies are influ-
enced by concrete’s electrical properties—primarily electrical
conductivity—and processes (Wenner et al. 1915; Maser and
Rawson 1993; ASTM 2015). On the other hand, although the
dominant delamination location well matches the most severely
corrosion-affected areas from other maps, the correlations between
IE and these maps are not as strong. It should be noted that the IE
condition map for 2016 correlates better with the 2010–2012
condition maps for ER, HCP, and GRP. This may indicate that
the deterioration of this bridge deck identified by IE (delamination)
is delayed about 5 years compared with the deterioration detected
by ER, HCP, and GPR, which again supports the observation
that the main cause of delamination of this bridge deck is rebar
corrosion.

Remaining Service Life Estimation

Estimation of the remaining service life of the surveyed bridge deck
is illustrated in Fig. 11. The models shown are based on deterio-
ration curves from the four NDE technologies without segmenta-
tion (single-segment). Fig. 11(a) is based on the CIs [Fig. 5(a)], and
Fig. 11(b) is based on the serious condition percentage [Fig. 5(b)].
The model coefficient values a, b, c, and d for the CI and the seri-
ous condition percentage are provided in Table 3. Horizontal
dashed lines in the plots at the CI and serious condition percentage
of 30 and 50, respectively, represent hypothetical end-of-life and
rehabilitation thresholds. As an illustration, this bridge deck is
assumed to be replaced when its CI falls below 30 or its serious
condition percentage rises above 50.

According to the predictive model shown in Fig. 11(a), the
bridge deck reached its end-of-life threshold during in 2012–
2016. That is, for the given parameters, including data boundaries,
weighting factors, segmentation, and curve shape, the life of this
bridge deck is about 33–37 years until its CI falls below 30. A sim-
ilar trend is observed from the serious condition percentage shown
in Fig. 11(b). As illustrated, the bridge deck service life estimation
can be conducted easier and faster using the developed program
through a real-time presentation of CIs, maps, and predictive mod-
els. The same curves can be used to define points in time when
certain interventions need to take place for optimized bridge deck
management. As an example, it is assumed, and illustrated by the

dotted lines in Fig. 11, that the thresholds for a certain action are
set for the CI to fall to or below 50 or for the serious condition
percentage to rise to or above 30.

Summary and Conclusions

An automated, multiple NDE data processing and data analysis
program was developed for condition mapping, computation of
condition indices, deterioration modeling, and remaining service
life estimation for concrete bridge decks. The ultimate objective
of the program is to deliver useful information to bridge owners
and engineers in support of decision making in bridge manage-
ment. The program follows the sequence of actions related to
NDE data processing, bridge deck segmentation, regression analy-
ses, data integration, deterioration and predictive modeling, and
service life estimation. Segmentation and many other input param-
eters can be easily adjusted so that condition maps, condition in-
dices, and deterioration curves are displayed and updated in real
time, reflecting the effects of changes in input parameters. Also,
one can review the program condition maps and indices for pro-
jected future conditions of a bridge deck, and further evaluate
deterioration models of a segmented area of interest.

Multiple NDE data sets collected for the bridge in Haymarket,
Virginia, during five and a half years (2009–2015) were used to dem-
onstrate the program’s deterioration modeling and remaining-life
prediction capabilities. Periodical and long-term bridge deck
condition assessment using consistent approaches is vital for the
development of realistic and reliable predictive models. Further-
more, it is highly recommended that the bridge deck be evaluated
soon after completion of bridge construction to establish baseline
conditions.
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Fig. 11. (Color) Examples of service life predictive models with hypothetical end-of-life and rehabilitation thresholds set to 30 and 50, respectively,
based on (a) condition indices; and (b) serious condition percentage.
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